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Abstract

Accurate calculations of the binding energies, the hyperfine splitting, the bound-electron g-factor, and the parity nonconservation effects in heavy
few-electron ions are considered. The calculations include the relativistic, quantum electrodynamic (QED), electron-correlation, and nuclear effects.
The theoretical results are compared with available experimental data. A special attention is focused on tests of QED in a strong Coulomb field.
© 2006 Elsevier B.V. All rights reserved.
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. Introduction

Accurate calculations of heavy few-electron ions must be
erformed in the framework of the rigorous quantum electrody-
amic (QED) formalism. The basic methods of quantum elec-
rodynamics were formulated to the beginning of 1930s, almost
mmediately after creation of quantum mechanics. This the-
ry provided description of such low-order processes as emis-
ion and absorption of photons and creation and annihilation
f electron-positron pairs. However, application of this theory
o some higher-order effects gave infinite results. This problem
emained unsolved until the late 1940’s when Lamb and Rether-
ord discovered the 2s− 2p1/2 splitting (Lamb shift) in hydro-
en. This discovery stimulated theorists to complete the creation
f QED since it was believed that this splitting is of quantum
lectrodynamic origin. First evaluation of the Lamb shift was
erformed by Bethe who used Kramer’s idea of the mass renor-
alization. A consequent QED formalism was developed by
yson, Feynman, Schwinger, and Tomonaga. They showed that

ll infinities can be removed from the theory by so-called renor-
alization procedure. The basic idea of this procedure is the

ollowing. The electron mass and the electron charge, which
riginally occur in the theory, are not directly measurable quan-
ities. All physical quantities calculated within QED become

finite if they are expressed in terms of the physical electron
mass and charge, parameters which can directly be measured
in experiment. All calculations in QED are based on the per-
turbation theory in the fine structure constant α ≈ 1/137.036.
The individual terms of the perturbation series are conveniently
represented by so-called Feynman diagrams.

Before the beginning of 1970s investigations of QED effects
in atomic systems were mainly restricted to low-Z atoms such
as hydrogen or helium (here and below, Z is the nuclear charge
number). In these systems, in addition to the small parameter α,
there is another small parameter, which is αZ. For this reason,
all calculations of low-Z atoms were based on the expansion in
α and αZ.

A great progress in experimental investigations of heavy few-
electron ions, which was made for the last decades (see [1,2] and
references therein), has required accurate QED calculations for
these systems. Investigations of heavy few-electron ions play a
special role in tests of quantum electrodynamics. This is due
to two reasons. First, in contrast to low-Z atoms, the parameter
αZ is not small and, therefore, the calculations must be per-
formed without any expansion in αZ [3]. Second, in contrast
to heavy neutral atoms, the electron-correlation effects can be
calculated to high accuracy using pertubation theory in the pa-
rameter 1/Z. For this reason, the QED effects are not masked by

large electron-correlation effects, as is the case in neutral atoms.
This provides an excellent opportunity to test QED at strong
e

∗ Corresponding author.
E-mail address: shabaev@pcqnt1.phys.spbu.ru (V.M. Shabaev).

387-3806/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijms.2006.01.012
lectric fields.



110 V.M. Shabaev et al. / International Journal of Mass Spectrometry 251 (2006) 109–118

The calculations of high-Z few-electron ions are generally
based on perturbation theory. To zeroth order, one can con-
sider that electrons interact only with the Coulomb field of the
nucleus. The interelectronic-interaction and QED effects are ac-
counted for by perturbation theory in the parameters 1/Z and α,
respectively. This leads to quantum electrodynamics in the Furry
picture. To formulate the perturbation theory for calculations of
the energy levels, transition and scattering amplitudes, it is con-
venient to use the two-time Green function method [4]. For very
heavy ions the parameter 1/Z becomes comparable with α and,
therefore, all the corrections may be classified by the parameter
α only. In the present paper, we consider the current status of
these calculations.

Relativistic units (� = c = 1) are used in the paper.

2. Binding energies in heavy few-electron ions

2.1. H-like ions

To calculate the binding energy in a hydrogenlike ion, we
may start with the Dirac equation,

(α · p + βm+ VC(r))ψ(r) = Eψ(r), (1)

where VC(r) is the Coulomb potential induced by the nucleus.
For the point-nucleus case, this equation leads to the binding
energy
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and R is an effective radius of the nuclear charge distribution
defined by

R =
{

5

3
〈r2〉

[
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(αZ)2

(
3

25

〈r4〉
〈r2〉2 − 1

7

)]}1/2

. (5)

The corresponding formulas for other states can be found in Ref.
[6]. We note that, in contrast to the nonrelativistic case where
the corresponding correction is completely defined by the root-
mean-square radius, in heavy ions the higher order moments
of the nuclear charge distribution are required to determine the
nuclear-size correction on a 1% accuracy level. For instance, in
case of Z = 92 to gain the precision ∼ 0.2%, it is necessary to
know the moment 〈r4〉.

The next corrections one should take into account are the
QED corrections of first order in α. They are determined by the
self-energy (SE) and vacuum-polarization (VP) diagrams (Fig.
1a and b). The contribution of the self-energy diagram (Fig. 1a)
combined with the corresponding mass counterterm is given by:

�E = 2iα
∫ ∞

−∞
dω

∫
dx1

∫
dx2ψ

†
a(x1)αµG(Ea − ω, x1, x2)

×Dµν(ω, x1 − x2)ανψa(x2) − δm

∫
dxψa(x)ψa(x) (6)

Here ψa(x) is the Dirac-Coulomb wave function of the state
under consideration, ψ = ψ†γ0, G(ω, x1, x2) is the Coulomb
G
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nj −mc2 = − (αZ)2

2ν2

2

1 + (αZ/ν)2 +
√

1 + (αZ/ν)2
mc2, (2)

here ν = n+
√

(j + 1/2)2 − (αZ)2 − (j + 1/2), n is the
rincipal quantum number, and j is the total angular momen-
um. To get the binding energy to a higher accuracy, we have to
valuate the quantum electrodynamic and nuclear corrections.

The finite-nuclear-size correction can be obtained by solving
he Dirac equation with the potential induced by an extended-
harge nucleus and taking the difference between the energies
or the extended and the point-nucleus model. This can be done
ither numerically (see, e.g., Ref. [5]) or analytically [6]. To a
elative accuracy of ∼ 0.2%, in the range Z = 1–100 the finite-
uclear-size correction is given by the following approximate
ormulas [6]:

Ens = (αZ)2

10n
[1 + (αZ)2fns(αZ)]

(
2
αZ

n

R

(�/mc)

)2γ

mc2,

(3)

Enp1/2 = (αZ)4

40

n2 − 1

n3 [1 + (αZ)2fnp1/2 (αZ)]

×
(

2
αZ

n

R

(�/mc)

)2γ

mc2, (4)

here γ =
√

1 − (αZ)2,

f1s(αZ) = 1.380 − 0.162αZ + 1.612(αZ)2,

f2s(αZ) = 1.508 + 0.215αZ + 1.332(αZ)2,

f2p1/2 (αZ) = 1.615 + 4.319αZ − 9.152(αZ)2 + 11.87(αZ)3,
reen function,Dµν(ω, x1 − x2) is the photon propagator,αµ =
1, α), and α is a vector incorporating the Dirac matrices. The
rst evaluation of the SE correction for heavy ions was per-
ormed by Desiderio and Johnson [7] who employed the method
uggested by Brown, Langer, and Schaefer [8]. Later, Mohr [9]
eveloped another method which allowed him to perform a high
recision evaluation of this correction in the rangeZ = 10–110.
n alternative approach to this problem was worked out in Refs.

10–12]. The most accurate calculations of the SE correction to
ll orders in αZwere performed by Mohr [13] and by Indelicato
nd Mohr [14] for the point-nucleus case and by Mohr and Soff
15] for the case of extended nuclei. The highest accuracy for
ow-Z ions was achieved by Jentschura et al. [16].

The formal expression for the vacuum-polarization correc-
ion (Fig. 1b) is given by

E = α

2πi

∫ ∞

−∞
dω

∫
dx1

∫
dx2ψ

†
a(x1)

1

|x1 − x2|
× [TrG(ω, x2, x2)]ψa(x1). (7)

his expression is ultraviolet divergent. It can be renormalized
y dividing into two parts. The first part corresponds to the first

Fig. 1. First-order self-energy and vacuum-polarization diagrams.
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nonzero term in the potential expansion of the Coulomb Green
function in powers of αZ. This part, so-called Uehling part, be-
comes finite due to the charge renormalization and its evaluation
causes no problem. The second part, so-called Wichmann–
Kroll (WK) part, accounts for all higher order terms of the
αZ-expansion. Despite this part being finite, the regularization
is still needed due to a spurious gauge-dependent piece of the
light-by-light scattering contribution. Calculations of the WK
contribution in a wide range of Z were performed first by Soff
and Mohr [17] for the extended nucleus case and by Manakov
et al. [18] for the point-nucleus case. The most accurate results
for some specific ions were obtained by Persson et al. [19].

The QED corrections of second order in α are determined
by diagrams presented in Fig. 2. Most of these diagrams can be
calculated using the methods developed for the first-order SE
and VP corrections [20–26]. The most demanding problem is to
evaluate the SE–SE diagrams [27] and the V(SE)P diagram (the
diagram with a photon line inside the VP loop) [28]. The loop-
after-loop SE–SE diagram was first evaluated by Mitrushenkov
et al. [29]. A partial evaluation of the other SE–SE diagrams was
performed by Mallampalli and Sapirstein [30]. The residual SE–
SE terms were first calculated by Yerokhin and Shabaev [31].
Finally, in Refs. [32] the whole gauge invariant set of the SE–
SE diagrams was evaluated in the range Z = 10–100. As to the
S(VP)E diagram, to date it was evaluated only in the Uehling
approximation [20,21].
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b

orous relativistic theory of the recoil effect can be formulated
only in the framework of QED. In case of a hydrogenlike atom,
a closed formula for the recoil effect to first order in m/M and
to all orders in αZ was derived in Ref. [33] (see also [34] and
references therein). According to this formula, the recoil correc-
tion is given by the sum of a low-order term �EL and a higher
order term �EH, where

�EL = 1

2M
〈a|[p2 − (D(0) · p + p · D(0))]|a〉, (8)

�EH = i

2πM

∫ ∞

−∞
dω 〈a|

(
D(ω) − [p, VC]

ω + i0

)

×G(ω + Ea)

(
D(ω) + [p, VC]

ω + i0

)
|a〉. (9)

Here p is the momentum operator, G(ω) is the Coulomb Green
function,Dm(ω) = −4παZαlDlm(ω), andDik(ω, r) is the trans-
verse part of the photon propagator in the Coulomb gauge. In Eq.
(9), the scalar product is implicit. The term�EL contains all the
recoil corrections within the (αZ)4m2/M approximation. For
the point-nucleus case, it can easily be calculated analytically
[33]

�EL = m2 − E2
a

2M
. (10)
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-elect
The calculations discussed above are based on the approxi-
ation in which the nucleus is considered as a source of the ex-

ernal Coulomb field. It defines quantum electrodynamics within
he external field approximation. The first step beyond this ap-
roximation would consist in evaluation of the nuclear recoil
orrection. As is known, in the nonrelativisic theory of a hydro-
enlike atom the recoil effect can easily be taken into account
y using the electron reduced mass µ = mM/(m+M). A rig-

Fig. 2. Second-order one
he term �EH contains the contribution of order (αZ) m /M

nd all contributions of higher order in αZ which are not ac-
ounted for by the �EL term. Numerical evaluations of the
ecoil correction to all orders in αZ were performed in Refs.
35,36] for point and extended nuclei, respectively.

Finally, one should take into account the nuclear polarization
orrection, which sets the ultimate limit of accuracy up to which
ED can be tested in atomic systems. This correction is deter-
ined by the electron–nucleus interaction diagrams in which the

ron Feynman diagrams.



112 V.M. Shabaev et al. / International Journal of Mass Spectrometry 251 (2006) 109–118

Table 1
Individual contributions to the ground-state binding energy in 238U91+, in eV

Point-nucleus binding energy −132279.93(1)
Finite nuclear size 198.33(52)
First-order SE 355.05
First-order VP −88.60
Second-order QED −1.26(33)
Nuclear recoil 0.46
Nuclear polarization −0.20(10)
Lamb shift theory 463.78(62)
Lamb shift experiment [41] 460.2(4.6)

The Lamb shift is defined as a part of the binding energy that is beyond its
point-nucleus value given by Eq. (2).

intermediate states of the nucleus are excited. It was evaluated
by Plunien and Soff [37] and by Nefiodov et al. [38].

The individual contributions to the ground-state binding en-
ergy in 238U91+ are given in Table 1. The uncertainty of the
Dirac binding energy comes from the uncertainty of the R∞hc
constant [39]. The finite-nuclear-size correction is evaluated
for the Fermi model of the nuclear charge distribution with
〈r2〉1/2 = 5.8507(72) fm [40]. The uncertainty of this correction
is estimated by adding quadratically two errors, one obtained by
varying the root-mean-square radius and the other obtained by
changing the model of the nuclear-charge distribution from the
Fermi to the homogeneously-charged-sphere model. As one can
see from the table, the present status of the theory and experi-
ment on heavy H-like ions provides a test of QED on the level
of about 2%.

2.2. Li-like ions

To date, the highest accuracy was achieved in experiments on
the 2p1/2,3/2 − 2s transitions in heavy Li-like ions [42–45]. In
these systems, in addition to the one-electron contributions dis-
cussed above, one has to evaluate two- and three-electron con-
tributions. To first order in α, the two-electron contribution is
determined by the one-photon exchange diagram (Fig. 3) whose
calculation causes no problem. To second order in α, one should
account for the two-photon exchange diagrams (Fig. 4) and the
s
5
f
a

Fig. 3. One-photon exchange diagram.

Fig. 4. Two-photon exchange diagrams.

the vacuum-polarization screening diagrams was performed in
Ref. [51]. The self-energy screening diagrams were evaluated
in Refs. [52,47]. To gain the accuracy required by the experi-
ments, in addition to higher order one-electron QED corrections,
one should evaluate the interelectronic-interaction corrections of
third and higher orders in the parameter 1/Z. Such evaluations
within the framework of the Breit approximation were accom-
plished in Refs. [53,54,48].

The individual contributions to the 2p1/2 − 2s transition en-
ergy in Li-like uranium are presented in Table 2. The total theo-
retical value of the transition energy, 280.66(22) eV, agrees well
with the related experimental values, 280.59(10) eV [42] and
280.52(10) eV [45]. Comparing the first- and second-order QED
contributions, −42.93 eV and 1.45(18) eV, respectively, with the
total theoretical and experimental uncertainties, we conclude
that the present status of the theory for Li-like uranium provides

m-pol
elf-energy and vacuum-polarization screening diagrams (Fig.
). The two-photon exchange diagrams were evaluated by dif-
erent authors [46–50]. The results of these calculations are in
good agreement with each other. The complete calculation of

Fig. 5. Self-energy and vacuu
 arization screening diagrams.
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Table 2
The 2p1/2 − 2s transition energy in 238U89+, in eV

One-photon exchange 368.83
One-electron nuclear size −33.27(8)
First-order QED −42.93
Two-photon exchange within the Breit approximation −13.54
Two-photon exchange beyond the Breit approximation 0.17
SE and VP screening 1.16
Three- and more photon exchange 0.16(7)
Nuclear recoil −0.07
Nuclear polarization 0.03(1)
One-electron second-order QED 0.12(18)
Total theory 280.66(21)
Experiment [42] 280.59(10)
Experiment [45] 280.52(10)

a test of QED on a 0.5% level to first order in α and on a 15%
level to second order in α.

2.3. He-like ions

In Refs. [55,56], the two-electron contribution to the ground-
state energy of helium-like ions was measured. It was done by
comparing the ionization energies of helium-like and hydrogen-
like ions. This experiment is of special importance since to date
the two-electron contribution is the only measured value which
has been calculated to the second order in α. As in case of Li-like
ions, the lowest order two-electron contribution is determined
by the one-photon exchange diagram. The contributions of sec-
ond order in α are given by the two-photon exchange diagrams
and by the SE and VP screening diagrams. The two-photon ex-
change contribution was first evaluated by Blundell et al. [57]
and by Lindgren et al. [58]. This contribution can be convention-
ally divided into two parts: one which corresponds to the Breit
approximation and the other which is beyond the Breit approxi-
mation. The VP and SE screening diagrams for the ground-state
were evaluated in Refs. [59–62]. The corresponding calcula-
tions for excited states of He-like ions were performed in Refs.
[63–65,48,49,66,67].

In Table 3, we present the individual contributions to the two-
electron binding energy of the ground-state in He-like uranium.
T
a
Q
f
p

T
T

3. Hyperfine splitting in heavy ions

High-precision measurements of the hyperfine splitting
(HFS) in heavy hydrogen-like ions [68–72] have triggered a
great interest to theoretical calculations of this effect. The
ground-state hyperfine splitting of a hydrogen-like ion is conve-
niently written as [73]:

�Eµ = 4

3
α(αZ)3 µ

µN

m

mp

2I + 1

2I
mc2

×{A(αZ)(1 − δ)(1 − ε) + xrad}. (11)

Here mp is the proton mass, µ is the nuclear magnetic moment,
µN is the nuclear magneton, and I is the nuclear spin. A(αZ)
denotes the relativistic factor

A(αZ) = 1

γ(2γ − 1)
= 1 + 3

2
(αZ)2 + 17

8
(αZ)4 + · · · , (12)

δ is the nuclear-charge distribution correction, ε is the nu-
clear magnetization distribution correction (so-called Bohr–
Weisskopf correction), and xrad is the QED correction. The most
accurate calculations of the QED corrections were performed in
Refs. [74–76]. The uncertainty of the theoretical predictions is
mainly determined by the uncertainty of the Bohr–Weisskopf
(BW) effect. In calculations, based on the single-particle nu-
clear model [73,77,74,78], which provide a reasonable agree-
he two-photon exchange contribution is divided into two parts
s described above. The Breit contribution and the higher order
ED corrections are evaluated as in Ref. [67]. As one can see

rom the table, to test the screened QED effects, the experimental
recision should be improved by an order of magnitude.

able 3
he two-electron binding energy of the ground state in 238U90+, in eV

One-photon exchange 2265.90(1)
Two- and more photon exchange within the Breit

approximation
−11.96

Two-photon exchange beyond the Breit approximation −0.85
SE screening −9.78
VP screening 2.63
Higher order QED −0.05(18)
Total theory 2245.89(18)
Experiment [56] 2248(9)
ment with the experiments (see, e.g., Ref. [4]), this uncertainty
may amount up to about 100% of the BW effect and is generally
larger than the total QED contribution. More elaborated calcu-
lations, based on many-particle nuclear models [79,80], do not
provide a desirable agreement with the experiments.

A new method to determine the BW effect was recently de-
veloped in Ref. [81]. With this method, the BW correction to the
hyperfine splitting in hydrogen-like 209Bi, 203Tl, and 205Tl was
determined using experimental data on the hyperfine splitting in
the corresponding muonic atoms [82,83]. The parameters of the
nuclear magnetization distribution were chosen to reproduce the
experimental values of the nuclear magnetic moment as well as
the BW effect in muonic atoms extracted from the correspond-
ing experiments. The single-particle and configuration-mixing
nuclear models were considered. To increase the precision of de-
termining the BW contribution, the QED corrections for muonic
atoms have been evaluated. In Table 4, the BW correction to the
HFS in electronic H-like ions, derived from the experiments on
muonic atoms, is compared with the BW correction obtained
by direct calculations within the single- and many-particle nu-
clear models. Taking into account that the uncertainty of the

Table 4
The Bohr–Weisskopf correction ε, derived from experiments on muonic atoms
[81], is compared with previous direct evaluations of this effect within the single-
particle [77,78] and the many-particle [79,80] nuclear model

209Bi82+ 205Tl80+ 203Tl80+

Elizarov et al. [81] 0.0123(15) 0.0193(27) 0.0155(40)
Shabaev [78] 0.0118 0.0179 0.0179
Labzowsky et al. [77] 0.0131
Tomaselli et al. [79] 0.0210
Sen’kov and Dmitriev [80] 0.0095(+7,−38)
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Table 5
Hyperfine splitting in H-like ions, in eV

Theory [81] Theory [78] Experiment

203Tl80+ 3.220(20) 3.229(17) 3.21351(25) [72]
205Tl80+ 3.238(9) 3.261(18) 3.24410(29) [72]
209Bi82+ 5.098(7) 5.101(27) 5.0840(8) [68]

single-particle results may amount up to 30–100%, we conclude
that the ε values, based on experiments with muonic atoms, have
a better accuracy.

In Table 5, we compare the total theoretical results for the HFS
in H-like ions with experiment. As one can see from the table, the
results based on experiments with muonic atoms are closer to the
experimental ones, compared to the results based on the direct
calculations within the single-particle nuclear model. However,
due to a higher accuracy of the former results, a small discrep-
ancy between the theory and experiment occurs for 209Bi82+. It
can also be seen that in case of two isotopes of Tl, the results
of Ref. [81] are much closer to the related experimental values
than in case of Bi. Since, in contrast to the Tl isotopes, the bis-
muth nucleus has a nonzero electric-quadrupole moment, one
may expect that the discrepancy between the theory and experi-
ment is caused by a large contribution of the electric-quadrupole
splitting in muonic bismuth. It is known that the first-order
electric-quadrupole splitting vanishes for s states. However, the
second-order effect is nonzero and, in principle, it may be sig-
nificant for muonic atoms. This is due to a relatively large role of
the electric-quadrupole HFS interaction in muonic atoms com-
pared to electronic ones. Our numerical evaluation of this effect
showed that, whereas it changes the HFS in muonic bismuth by
about −3.4 eV, it almost does not affect the BW value presented
in Table 4.

One of the main goals of the HFS experiments with heavy
H
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level of a few percent, provided the HFS is measured to accuracy
∼ 10−6.

4. Bound-electron g-factor

The g-factor of a hydrogenlike ion with a spinless nucleus
can be defined as

g(e) = −〈JMJ |µ(e)
z |JMJ 〉

µBMJ

, (14)

where µ(e) is the operator of the magnetic moment of electron
and µB is the Bohr magneton. For the 1s state, a simple rela-
tivistic calculation based on the Dirac equation yields

gD = 2 − 4
3 (1 −

√
1 − (αZ)2). (15)

The total g-factor value can be written as

g(e) = gD +�gQED +�grec +�gNS, (16)

where �gQED is the QED correction, �grec is the nuclear re-
coil correction, and �gNS is the finite-nuclear-size correction.
High-precision measurements of the bound-electron g-factor in
H-like carbon [85,86] and oxygen [87] have stimulated success-
ful theoretical calculations of this effect (see Refs. [88–94] and
references therein). In particular, these studies provided a new
determination of the electron mass to an accuracy which is four
t
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-like ions was to probe the magnetic sector of QED in the pres-
nce of a strong Coulomb field. The analysis of the theoretical
esults showed, however, that the QED corrections to the HFS in
eavy H-like ions are strongly masked by the uncertainty of the
W effect. This makes unfeasible tests of QED by a direct com-
arison of theory and experiment on the HFS in heavy H-like
ons. An opportunity for QED tests has been found by consid-
ring a specific difference of the ground-state HFS values in H-
nd Li-like ions [84]. Namely, it was shown that the difference

′E = �E(2s) − ξ�E(1s), (13)

here �E(1s) and �E(2s) are the HFS in H- and Li-like ions of
he same isotope, is very stable with respect to variations of the
uclear model, if the parameter ξ is chosen to cancel the BW
orrections in the right-hand side of Eq. (13). The parameter ξ is
lmost independent of the nuclear structure and, therefore, can
e calculated to a high accuracy. In case of Bi, the calculations
ield ξ = 0.16885 and �′E = −61.27(4). The non-QED and
ED contributions amount to −61.52(4) and 0.24(1), respec-

ively. It means that the QED contribution is six times larger
han the current total theoretical uncertainty. This provides good
erspectives for tests of QED in the HFS experiments. In partic-
lar, it can be shown that this method allows one to test QED on
imes better than that of the 1998 CODATA value. As a result, the
002 CODATA value for the electron mass [39] is derived from
he g-factor measurements. An extension of these experiments to
igher-Z systems, which is anticipated in the near future, could
ead also to an independent determination of the fine structure
onstant.

For heavy H-like ions the theoretical uncertainty of the
ound-electron g-factor is mainly determined by the nuclear ef-
ects [91,93]. This uncertainty becomes comparable with the
inding QED corrections of second order in α and, therefore,
trongly restricts probing QED in these investigations. However,
n Ref. [95], it was shown that the uncertainty caused by the nu-
lear effects can be significantly reduced in a specific difference
f the g-factors of H- and Li-like ions of the same isotope. This
ives a good opportunity for tests of the magnetic sector of QED
n the presence of a strong Coulomb field. The most accurate cal-
ulations of the g-factor of Li-like ions in the range Z = 6–92
ere performed in Ref. [96].
The g-factor of a H-like ion with nonzero nuclear spin can be

pproximated as

= g(e)F (F + 1) + j(j + 1) − I(I + 1)

2F (F + 1)

− m

mp
gI
F (F + 1) + I(I + 1) − j(j + 1)

2F (F + 1)
. (17)

erem andmp are the electron and the proton mass, respectively,
(e) is the bound-electron g-factor defined above, gI = µ/µnI

s the nuclear g-factor, µn = |e|/2mpc is the nuclear magne-
on, j and I are the electron and the nucleus angular momen-
um, respectively, and F is the total angular momentum of the
on. According to formula (17), the contribution of the nuclear
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Table 6
The bound-electron g-factor in 209Bi82+

Point-nucleus Dirac value 1.7276
QED 0.0029
Nuclear size correction 0.0005
Total theory 1.7310
Experiment [99] 1.7343(33)

g-factor is suppressed by factor m/mp compared to the elec-
tronic g-factor. It follows that measurements of the g-factor of
ions with nonzero nuclear spin with a 10−9 accuracy would pro-
vide determinations of the nuclear magnetic moments on the
10−6 accuracy level. Calculations of various corrections to for-
mula (17) were presented in Ref. [97].

Another possibility for investigations of the g-factor of ions
with nonzero nuclear spin was discussed in Ref. [98]. In that
work, it was shown that the transition probability between the
ground-state hyperfine splitting components of a hydrogenlike
ion, including the QED and nuclear corrections, is given by

w = α

3

ω3

m2

I

2I + 1

[
g(e) − gI

m

mp

]2

, (18)

where ω is the transition frequency. Formula (18) allows one
to calculate the QED and nuclear corrections to the transition
probability using the corresponding corrections to the bound-
electron g-factor. In particular, it was found [98] that in cases of
Pb and Bi, the QED and nuclear corrections increase the transi-
tion probability by about 0.3%. In Ref. [99], the life time of the
upper hyperfine splitting component in 209Bi82+ was measured
to be τexp = 397.5(1.5) �s. This result is in a good agreement
with the theoretical prediction [98] τtheo = 399.01(19) �s. Us-
ing formula (18) and the experimental values of the hyperfine
splitting and the transition probability in 209Bi82+ [68,99], one
fi
t
T
g
t
t

5

a
M
m
r
a
F
t
w
t
w
a
t
s
a

Table 7
The 23P0 − 21S0 transition energy, in eV

Z Artemyev
et al. [67]

Andreev
et al. [49]

Plante et
al. [106]

Drake
[107]

63 −0.224(69) −0.591 −0.168
64 0.004(74) −0.389 −0.170 0.067
65 0.32(12) −0.153 0.328
66 0.495(84) 0.016 0.341 0.614
89 1.61(46) 1.731
90 0.61(46) −0.095 0.718
91 −0.31(55) −1.971 −0.209
92 −2.64(28) −4.511 −2.639 −1.816

ber near Z = 64 and Z = 92, where two levels of the opposite
parity, 21S0 and 23P0, are very close to each other. The study of
PNC effects with these ions requires precise knowledge of the
21S0 − 23P0 energy difference. The most accurate calculations
of this difference, which include a complete set of two-electron
QED corrections, were performed in Ref. [67]. In Table 7, the
results of Ref. [67] are compared with the related data by other
authors.

A feasible PNC experiment with heavy ions was suggested
by Labzowsky et al. [108]. Instead of the standard measurement
of the circular dichroism which is rather difficult to perform
with X-ray radiation, it was proposed to study a one-photon
21S0 − 11S0 transition in polarized He-like ions near Z = 64,
where the 21S0 and 23P0 levels are almost degenerate. A one-
photon M1 transition from 21S0 to 11S0 is possible through
hyperfine induced mixing between the 21S0 and 23S1 levels. An
additional possibility is admixture of the 23P1 level due to the
combined effects of weak interaction (mixing 21S0 and 23P0)
and hyperfine interaction (mixing 23P0 and 23P1). As a result,
the total amplitude of the one-photon 21S0 − 11S0 transition is a
mixture of the basic M1 and the additional E1 amplitude. How-
ever, if the lifetime of the 21S0 state, which is mainly defined
by the 2E1 two-photon transition to the ground-state, is com-
parable or smaller than the 23P0 lifetime, a strong background
may occur in the experiment. This is the case for gadolinium
(Z = 64) but not for europium (Z = 63), where the 21S level
l
e

b

ρ

w
t
d
o

d

w
t
e

ε

nds the experimental value of the bound-electron g-factor in Bi
o be 1.7343(33). The corresponding theoretical value is 1.7310.
he values of the individual contributions to the bound-electron
-factor in Bi are given in Table 6. From this table, it can be seen
hat the QED correction is needed to obtain agreement between
he theory and experiment.

. Parity nonconservation effects with heavy ions

Investigations of parity nonconservation (PNC) effects in
tomic systems play a prominent role in tests of the Standard
odel (SM) [100]. The well-known cesium experiment by Wie-
an’s group [101], compared to the most elaborated theoretical

esult (see Ref. [102] and references therein), provided the most
ccurate test of electroweak theory at the low-energy regime.
urther improvement of tests of the Standard Model with neu-

ral atoms, from theoretical side, is mainly limited by difficulties
ith accurate calculations of the electron-correlation effects. For

his reason, the PNC experiments with heavy few-electron ions,
here the electron-correlation effects can be evaluated to a high

ccuracy, seem highly desirable. The PNC effects in these sys-
ems were first discussed in Refs. [103–105]. For tests of the
pin-independent part of the week interaction, a promising situ-
tion occurs in heavy He-like ions with the nuclear-charge num-
0
ives significantly longer than the 23P0 level. For this reason,
xperiments with Eu61+ ions seem more promising [108].

The polarization of the ion in the 21S0 state can be described
y the density matrix [108]

= 1

2I + 1

[
1 + 3λ0

I + 1
(ν · I)

]
, (19)

here I is the operator of the total angular momentum, ν is
he unit vector directed along the ion polarization, and λ0 is the
egree of polarization (λ0 ≤ 1). The probability for the emission
f a photon in direction n is given by [108]

W(n) = WM1

4π
[1 + ε(ν · n)]d�, (20)

here WM1 is the total probability of the hfq M1 21S0 − 11S0
ransition and ε is the asymmetry coefficient caused by the PNC
ffects. Our evaluation of this coefficient yields

= 6λ0

√
WE1/WM1

I + 1
, (21)
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whereWE1 is the total probability of the weak-hyperfine quench-
ing E1 21S0 − 11S0 transition. We note that expression (21) dif-
fers by about a factor of 2 from the related expression derived
in Ref. [108].

The experiment should consist in observing the difference of
the transition probability (20) due to a change of the ion polariza-
tion direction or, equivalently, due to rotating the detector around
the beam direction by an angle π. The value of this difference is
proportional to the asymmetry parameter ε. Our calculation of
this parameter for europium employing the transition energies
from Ref. [67] (see Table 7) yields ε ≈ 0.0004λ0. This value is
almost four times larger compared to that obtained in Ref. [108].
This is due to a change of the 21S0 − 23P0 energy difference,
compared to that used in Ref. [108], and due to the change of
the expression for ε discussed above.

The experiment under consideration requires preparing and
storing a polarized ion beam. A promising idea for preparation
of polarized ion beams was suggested in Ref. [109].

6. Conclusion

In this paper we have considered the present status of calcula-
tions of the QED effects in heavy few-electron ions. Calculations
of the PNC effects for heavy ions have also been discussed.

To date, the most accurate tests of QED effects on binding
energies in a strong Coulomb field have been accomplished in
h
o
o
p
a
e

i
u
f
t
w
d

h
s
m
a

p
o
m
t
t
w
n
m

p
o
H

times increase of the PNC effect, compared to previous calcula-
tions.
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